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ABSTRACT

This paper presents the testing and comparison of two Extended Kalman Fitters (EKFs) developed for the

Earth Radiation Budget Satellite (ERBS). One EKF updates the attitude quaternion using a four component

additive error quaternion . This technique is compared to that of a second EKF, which uses a muttipticative

error quaternion. A brief development of the multipticative algorithm is included. The mathematical

development of the additive EKF was presented in the 1989 Flight Mechanics/Estimation Theory Symposium along

with some preliminary testing results using real spacecraft data. A summary of the additive EKF algorithm is

included. The convergence properties, singularity problems, and normalization techniques of the two filters

are addressed. Both filters are tested with simulated ERBS sensor data in addition to real ERBS sensor data.

The results of the two fitters are also compared to those from the ERBS operational ground support software,

which uses a batch differential correction algorithm to estimate attitude and gyro biases. Sensitivity

studies are performed on the estimation of sensor calibration states. The potential application of the EKF

for real time and non-real time ground attitude determination and sensor calibration for future missions such

as the Gamma Ray Observatory (GRO) and the Small Explorer Mission (SMEX) is also presented.

I. INTRODUCTION

The p_Jrpose of this study was to test and con_oare two EKFs developed for ERBS. ERBS is equipped with the

following sensors that are used for attitude determination: 2 redundant Inertial Reference Units (IRUs) each

containing 3 single-axis gyroscopes, 2 digital fine Sun sensors (FSSs), 2 infrared (IR) horizon scanners, and

I three-axis magnetometer. The state estimated by both EKFs consists of the attitude parameters, sensor

misalignments for the Sun sensor, magnetometer and gyros, biases for the Sun sensor, horizon scanner,

magnetometer and gyros, and scale factors for the Sun sensor, horizon scanner, magnetometer and gyros. A real

time EKF was also developed which estimates only the attitude parameters and the gyro bias.

The development and initial testing of the additive EKF was presented in Reference I. This fitter was

tested with only real data over short timespans. A multiplicative EKF was designed and tested and is

presented in Reference 2. This work presents further testing of the additive EKF and comparison of the

additive EKF to a multiplicative EKF adapted from that presented in Reference 2. The two filters are also

compared, when possible, to the current ERBS batch algorithm which is used for fine attitude and gyro bias

estimation. Both simulated data and real data are used for the testing and comparison.

In the additive EKF, the estimated quaternion is not necessarily normal unless it converges to the

correct quaternion. Reference 3 shows that normalization speeds convergence of the filter and eliminates the

need for filter tuning. The normalization techniques used in References I and 3 were external to the EKF

algorithm. The covariance computation was not affected by the normalization, but the state estimation

algorithm had to be modified to incorporate the part of the state estimate that was lost in the normalization.

The realization of the normalization process as an update using a pseudo-measurement blends naturally into the

EKF algorithm and does not require any modification of the EKF itself. This technique is tested on the

additive EKF and compared to the original normalization process. The need for normalization in the

mu[tiplicative EKF is also presented.
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II. THE EXTENDED KALMAN FILTER ALGORITHM

The EKF algorithm is based on the following assumed models

System model Measurement model

= !(X(t),t) + wit) (2.1) _k = _k(_(tk)) + _k (2.2)

where: X(t) = state vector

wit) = zero mean white process

_k = zero mean white sequence

The measurement update and the propagation of the state estimate and of the error covariance are performed as

Update: Xk(+) = Xk (-) + Kk[Zk - hkC_k(-))] (2.3)

where the gain matrix, K, is evaluated as

Pk(+) = [I - KkHk]Pk(-)[I - KkHk IT + KkRkKk T

Kk = Pk(-)HkT(_k(-))[Hk(_k(-))pk(-)HkT(_k(-)) + R k]
-I

(2.4)

(2.5)

Propagation:

XCt) = !(_(t),t) (2.6) Pit) = F(X(t),t)P(t) + P(t)FT(_(t),t) + Q(t) (2.7)

where:

F(X(t),t) -

_(X(t),t) [

I
_(t) I X(t)=X(t)

h(_(t))I
(2.8a) HCX(-)) - [ (2.8b)

_(t) I_(t):_

Pk = estimation error covariance matrix

Rk = covariance matrix of the white sequence _k

Qk = spectral density matrix of wit)

The state vector was selected to be

X _

q 4

S_g 3

e_g 6

_bg 3

-s :3

Ss 2

bs 2

Ioh 2

S_ml3
e_ml6

J

quaternion components

gyro scale factor errors

gyro misalignment angles

gyro biases

FSS misalignment angles

FSS scale factor errors

FSS biases

IR horizon scanner biases

magnetometer scale factor errors

magnetometer misalignments

magnetometer biases

(2.9)

The effective measurements used to update the filter are defined as

= MAT_T,,mea s " A(Q)_ I (2.10)

where: _ = effective measurements (or residuals)

MAT = transformation matrix from nominal (nonmisaligned) sensor to body coordinates

_T',meas = unit vector as measured by the sensor in the sensor misaligned coordinates
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A(g) : transformation matrix from inertial to body coordinates as a function of the estimated quaternion

_I = maasured unit vector as known in inertial coordinates

While the traditional EKF algorithm updates the state estimate according to (2.3), we use Z (as computed in

42.10)) to update the state estimate as

Xk (+) = _k (-) + x4t k) (Z.11) where: x4t k) = Kk_ k (2.12)

It can then be shown (Reference I) that _k " _k(_k (-)) is linearly related to _(tk). The EKF estimates _(t k)

and then ack:Is the estimate _(t k) to Xk(-), the best estimate of X(tk). The linear relationship between _(t k)

and _k will be shown in Section IV.

In the additive EKF, the first four con_onents of X4tk) are the corrections to the quaternion estimated

by the EKF, denoted as 8g. These corrections are added to g(-), the best estimate of g. The remaining

elements in _(t k) are the corrections to the calibration states which are also then added to the current best

estimate of those states.

]n the rnultiplicative EKF, the quaternion elements of x(t k) are treated differently. The definition of

x(t k) is given as

r ]

I-=l
x_ctk)= I I

ILl
L J

42.13)

where: F 1

= I _ I = three small angles based on the

I Q I assumption that the error quaternion

I _ I is composed of three small angles (as the

L J vector portion) and I (scalar portion)

81" = corrections to the calibration parameters given in (2.9)

The correction to the quaternion, given as 6g, is then constructed according to

F I

6g T= I'_ lY_I '/_l 1 I (2.14)

L J

The quaternion is updated as

gk+1(+) = gk+l(-)_g "1 (2.15)

The calibration co_oonents are updated according to (2.11). The updated values of the calibration components

and gk+1(+) are augmanted into (2.9) and are propagated in time using (2.6). The dynamics of the two EKFs

will be presented in the next section. For further discussion of the algorithms see References I and 2.

Ill. THE DYNAMICS MODEL

The states that vary in time are the attitude parameters and "bias" states that are modeled as Markov

rather than true bias states. The scale factors and misalignments are assumed to be constant in time. The

elements of x(tk) for the additive fitter are the same as those shown in (2.9) with the quaternion error, 6g,

replacing 9. The differential equation which governs the propagation of x is obtained by combining the linear

differential equations of the components of the attitude augmented state vector. This yields an equation of

the form

= F(X)_ + _ 43.1)

- ~

This equation is presented below with F and _n given. The matrices Q, B, U, W, and T w,,k=^_,_,,form F are derived

and defined in Reference I. F given below and in 43.1) is defined in (2.8a). It is used to propagate the

covariance matrix in (2.7).
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In the muttipticative EKF, _ is replaced with (2.13) and the first row of F(X) is replaced with

F . . I

I_l'ulw II I I I I I I I I (3.3)

where: . r . l

n = I o wz -WyI
I_ _ I
I-wz o Wx I
I_ I

I Wy -"x o I
L J

I = 3x3 identity matrix

(3.4)

The first row of D in (3.1), defined in (3.2), is replaced by ng I. The spectral density of the elements of

the white noise driving the Markov states in _ in both EKFs is related to the individual states they drive

according to the well known relation Qi = 2°Zi,o/Ti(Reference 4) where Qi is the spectral density of the

white noise driving state i, T i is the time constant of this Markov state and Gi, ° is the initial standard
deviation of the state.

The estimation problem dealt with in this paper is characterized by a linear dynamics equation. The

system dynamics can be augmented to obtain an equation of the form (Reference I)

_X = f(t)_X + n (3.5)

where X is given in (2.9) (for both EKFs) and the first row of F(t) in (3.2) is replaced with the following

to define f(t)

r . 3

I*1 I I I I I I I I I I (3.6)

The white noise vector n in (3.5) is of no consequence in the estimation process since according to (2.6) the

propagation of X requires only the evaluation of f(t).

]V. THE MEASUREMENT MOOEL

As mentioned in Section II the effective measurements used to update the filter are defined as

= MAT_T,,meas - A(Q)VI (4.1)

Incorporating the sensor misaLignments, scale factor errors, and biases into (4.1) the Linear relationship

between X and x can be derived. This yields the following

Y = Hqdg + NAT[k'T,,measX]_9 + MATd_/_T, (4.2)
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The terms introduced in (4.2) are derived and defined in Reference 1. The term [NT,,meas x] represents the

replacement of the cross product with the multiplication of an anti-symmetric matrix, composed of NTi,meas.
Equation (4.1) shows how to generate the effective measurement Z which updates the estimate and (4.2)

indicates the linear relationship between X, the attitude errors, the misalignment errors of the sensor being

used and clN_T,, the total error generated by the sensor. Equation (4.2) is the first stage in finding the

measurement matrix, N, (defined in (2.8b)) for each sensor used onboard ERBS.

The effective measurement (4.1) for the multiplicative EKF is computed in the same manner with ACt

replacing A(g). ACt is the transformation from the inertial to the comDut_ (estimated) body orientation.

The first term of (4.1) is manipulated the same as in Reference 1, but the second term is expanded in a

different manner. This process is outlined below. The matrix ACI can be written as

AC! = AcAAA! (4.3) where:

The matrix ACA can be written as

ACA = transformation matrix from the true body to the estimated body system

AA! = transformation matrix from the inertial to the true body system

ACA = I - lax] (4.4)

where a are defined in (2.13). Using (4.4) in (4.3) gives

ACt = (I - [=x])AAi (4.5)

Substituting (4.5) into (4.1) with the expansion of the first term of (4.1) from Reference I gives

= [a_X]AAIV_I - MAT[W_T,,measX] _ + MATd__T ,
(4.6)

Note that _A = AAI_I but since we don't know AAI we use the estimated matrix, i.e. _c = ACI_I' therefore we can

write (4.6) as

y = [-V_cX]_a - MAT[_WT,,measX]_e + MATO__T,
(4.7)

The models for each of the sensors will now be given. From these models, the H matrix for each sensor is

obtained. The derivation is shown in Reference 1.

FSS: r

I Io .... o
Y= I eqlO .... 0

I [o... o
L

"1

I I I Io .... ol r 1
MATCNT,,measX] I MAT_Is I tanA 0 I MATNs I 0 .... 0 I x + MATNs I nA I

I I o tanBI Io .... o I I nB I
J L J

(4.8)

II: r

I Io .... 0

x= I.qlO ....o
I 10 o
L

1

Io .... Ol r 1
Uh I o .... 0 ix + i_h I nhr I (4.9)

I o ....o I I nhpl
J L J

Magnetometer: F F I

I I0 ..........0 I nxmi

X = I Hq I o ..........o I MATB' _x + Wh nyl.n I

I I o .......... o I %mI
L L J

in 4.8, 4.9, and 4.10 [-VcX] replaces Hq in the muttipticative filter.

(4.10)

V. OUATERNION NORMALIZATION

Tk,,,e quaternion that represents attitude is norfr_{. Reference 3 shows that forcing normalization on the
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estimated quaternion is advantageous since it speeds up convergence and eliminates the need for filter tuning.

Reference I describes the forced normalization of the additive filter. That normalization technique is

equivalent to removing a portion of the estimate. That method of normalization is external to the EKF

algorithm. A new normalization method was derived that blends naturally into the Kalman filter algorithm.

The idea is to use the normalized quaternion as a "pseudo-measurement,,. Performing a measurement update with

very small noise (ideally zero) on the ,,measurement" then pushes the quaternion portion of the state to be the

normalized quaternion. The algorithm is

gk (+)

_Z = --

I
(5.1) where: gk (+) = the upper four elements of _k in (2.9)

The "measurement" covariance matrix can then be defined as:

r 3

110001
R = I 0 1 0 0 I 6 (5.2) where:

100101
IOOOll
L J

The measurement matrix, H, is defined as

£

1100010 ...... o
.=1OlOOlO ...... o

1o01o1o ...... o
1o0011o ...... o
k J

The gain is computed according to (2.4).

6 = a very small dimensionless number

(5.33

The state is updated as

X k (+) = Xk(+) + K[_z - HX(+)] (5.4)

The covariance is updated with (2.5). This measurement update process is according to a linear Katman fitter

and not the extended Katman filter since it handles the state X directly in the update and not the error

state, x.

The quaternion is also normalized in the muttipticative EKF for the same reasons as the additive EKF.

The normalization process used was a forced normalization. The quaternion was simply normalized with no

compensation performed.

V[. cOMPENSATION

When propagating the state estimate and the covariance, we use the measured angular velocity. We know,

however, that the propagated values are not accurate because the gyro output contains errors. We can better

estimate those errors if we correct the gyro output for estimated errors. This operation is known as

calibration.

We also want to compensate the measurements obtained from the FSS, the IR horizon scanner, and the

magnetometers which are all orientation measuring devices whose output are used to update the fitter. The

reason we want to compensate the output from these sensors is different in nature than the reason for

compensating the gyro output, in (2.11) we estimate the difference between the true value of X and its

latest estimate, and add the estimate of the difference to the latest estimate of X to form its updated

estimate. Let us consider an error term in one of the sensor measurements (say a bias). This bias is a

part of _T',meas and, thus, as indicated in (4.1) bears its signature on _. Consequently, if certain

observability conditions are met, it is estimated and added to the state estimate as indicated in (2.11). If

no compensation takes place, the next time the measurements of this sensor are processed the bias is again

estimated and added to the previous estimate of this bias, thus creating an estimate that is too large and

incorrect. The proper way to handle this case is to eliminate the estimate of the bias from _T'.meas so that

only the residual bias, which has not been estimated yet, is present in _ as shown in (4.1). only the
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estimate of this residual is added to the existing estimate of the bias, which is a part of X,

yielding a correction to the previous estimate. This logic holds for the other error states, too. Reference

1 outlines this method. The compensation was applied to the multiplicative EKF in the same manner.

VII. SINGULARITIES

It was found that the models for both the additive and multiplicative EKFs presented in Section IV contain

singularities. The IR and FSS measure only two quantities (direction). Artificial generation of a vector

measurement based on the IR and FSS measurements constitutes a projection of two-dimensional information on a

three dimensional space. Such projection yields a singular noise covariance matrix. Another singularity

exists in the additive EKF. This is because only three parameters are necessary to specify attitude. Adding

a fourth parameter results in the conM0utation of NPHT being singular.

To con_wmsate for the first singularity, the noise covariance matrices for the FSS and IR were reduced to

2x2 matrices. This forced the elimination of the third row of H. Note that the magnetometer measures three

indepandent components, and no alterations of its noise covariance and N matrices are necessary. In the

additive EKF, the singularity of NPHT is not removed by this operation. The nonsingular R keeps the

computation of (HPH T + R) in equation (2.4) from becoming singular.

Several tests were run to verify that the singularities were eliminated. It was found that as the

uncertainties in the measurement noises were reduced on the FSS and IR, the singular HPHT in the additive EKF

cannot be compensated for by the noise covariance matrices. The uncertainties in the FSS and IR measurement

noises were kept at 0.01 degrees or higher to avoid this. It was found in the multiplicative EKF that near

singular conditions can exist initially with a large initial attitude error. The filter overcomes the

singularity as the state is updated. This singularity exists because the assumption given by (2.14), that the

first three elements of _g are small, is violated.

VII. RESULTS

Several scenarios were run with both filters to study the characteristics of the two filters. Simulated

data were used for most of the tests. The simulated data had an attitude solution of 0 degrees yaw, roll, and

pitch. The x, y, and z gyro bias were approximately -1.7, 1.2, and 1.5 deg/hour during the first portion of

the orbit. During the latter portion of the orbit when the FSS had coverage, the y bias was approximately

-2.6 deg/hour for a short time peried (around 200 seconds) and then it changed back to 1.2 deg/hour. (The y

bias flipped in the simulated data due to the orbit eccentricity.) Other than the gyro bias the data were

clean with no noise. Other sensor calibrations were studied by applying errors to the different sensors and

seeing how well the two filters could estimate these errors. Real data were also used for some of the tests

and the results will be presented after the simulated data test results. When possible, results from the

batch estimator are also provided. The quaternion given in (2.9) defines the attitude in inertial

coordinates. It was converted to geodetic pitch, roll, and yaw solutions for display and conN_arison to the

batch solutions.

Simulated Data

The first study performed was a sensitivity study of the gyro bias to determine the best value for the a

priori covariance. The a priori covariance was varied to determine what value gave the lowest error in the

attitude and gyro bias solutions. As mentioned in Section III the gyro bias was nw)deled as a Markov process.

It was fourx_ in this scenario that, since the bias does not change, beth filters behaved better when the time

constant on the Markov was set very high. This essentially models the bias as a constant. The time constant

was set to lx105 seconds. The results of the sensitivity study showed that the best a priori value for the

Table i. A Priori Values for Both Filters

Attitude - specified for run

Other states - 0

Po attitude (quaternion) - 0.0625

Po gyro bias - !xi0 "7 rad2/sec '

Po other states - 0 unless specified

Q attitude - 2xi0 "9 rad=/sec z

Q Markov - see Section Ill

time constants - !x!05 sec

FSS measurement a- 0.01 degrees

IR measurement a- 0.01 degrees

Magnetometer measurement

a- 3 mittiGauss
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gyro bias covariance was oZ=lxlO "7 rad=/sec z. ALL other a priori values are given in Table 1. These values

were used in all runs except where noted.

The first case examined was a baseline case, solving only for attitude. The a priori attitude error was

50 degrees. Figures la and lb show the yaw solutions from the additive EKF and batch algorithm. The

muttipticative EKF yaw solution has the same shape as the additive EKF with the same final value. All

three sensors were used in the estimation. Both filters show similar behavior, converging quickly. The batch

solution converged onto the wrong solution. The a priori error of 50 degrees was too high. The filter pitch

and roll solutions converge very quickly, reaching values of 0.008 deg for roll and -0.001 degrees for pitch

(both filters). The batch epoch solution for roll was -2.8 degrees and 4.5 degrees for pitch. The sensor

residuals for the two filter solutions were very small, but not for the batch due to the large error in the

solution.

The next case involved adding the estimation of gyro bias to the baseline run. The attitude could not be

given such a large error in order for the solutions to converge. The a priori error was set to 10 degrees

{the limit was around 20 degrees). The yaw solutions for the two filters were similar to those shown in

Figure 1. The batch algorithm converged for all angles with final values similar to the filters. The pitch

and roll solutions also converge very quickly for the filters with nominal final results. Figures 2a and 2b

show the estimation of the gyro bias for the two fitters (in the span of data used the FSS had coverage so

the y gyro bias was approximately -2.6 deg/hr). The batch epoch gyro bias solution is listed on the

figure as well. The batch algorithm gives a slightly better estimate of the gyro bias. The filter, in

general, needs more than 100 seconds (typically 200 or more) to converge to the gyro bias solution. After 200

seconds the additive and muttipticative filters give

Additive (_deQ/hr) Multipticative (deg/hr) Batch (deg/hr)

x = -1.22 x = -1.54 x = -I.7

y = -1.71 y = -2.16 y = -2.6

z = 2.25 z = 1.40 z = 1.5

The multipticative shows a little quicker convergence to the gyro bias solution. Both converge beyond 200

seconds and remain stable.

The next iteration in the baseline study examined the effects of normalization. The pseudo-measurement

normalization technique outlined in Section V was implemented into the additive fitter. It was found that it

did not give good results when the noise covariance matrix was quite small. In this case the estimated

quaternion was almost completely replaced by the normalized quaternion and the covariance matrix converged to

a very small value. The filter then goes to the normalized quaternion with huge confidence but the normalized

quaternion is not necessarily the correct quaternion. Table 2 shows the results at 100 seconds for various

values of 6, the diagonal element of the noise covariance matrix (see Equation 5.2). Table 2 also gives the

result from the baseline case above, starting with an a priori error of 10 degrees and estimating gyro bias.

The pseudo-measurement normalization has the most effect on the pitch solution. As _ is decreased, the pitch

solution eventually diverges beyond what is given in Table 2.

Table 2. Pseudo-Measurement Normalization Results for Different

Noise Levels CA priori attitude = 10 degrees I 9yro bias estimated)

6 Yaw (deg) Roll (deQ) Pitch (deg)

1_10 "5 0.0031 0.0077 -0.0073

lx10 "7 0.0030 0.0075 -0.0073

lx10 -9 0.00037 -0.0078 0.084

baseline 0.0039 0.0078 -0.00058

Another characteristic of the pseudo-measurement technique is the increased use of computer processing time.

It took approximately 15 percent more computer time with the pseudo-measurement technique than the original

technique to process 1000 seconds. (This is due to the inversion of a 4x4 matrix.) Normalization is not very

critical for attitude determination in this scenario. The attitude solutions without normalization and with

the pseudo-measurement normalization technique are similar to those in the baseline cases discussed above.

Figures 3a1 3b, and 3c show the gyro bias estimates from the additive and multipticative EKFs with no
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normalization and from the additive EKF with the pseudo-measurement norrnatization. The gyro bias is affected

somewhat initially, but eventually the solutions converge. It was mentioned previously that Reference 3

shows normalization eliminates the need for filter tuning. Even though it is not crucial here it would be

expected to have an effect similar to that found previously in other scenarios, perhaps cases that are not as

nominal.

The next area examined was a yaw maneuver. The yaw was changed from 0 to 180 degrees at a constant rate.

The gyro biases are different in this case. The values for x, y, and z start out with the original biases but

after the maneuver they change to approximately 2.1, 1.2, and 1.6 deg/hr, respectively (due to geometry).

Again attitude and gyro bias were estimated. This time an upper limit of 20 degrees initial attitude error

was used. Figure 4a shows the yaw solution from the multipticative EKF. The additive EKF and batch yaw

estimates have the same shape with a final yaw values of 179.91 and 180.77 degrees. Both fitter estimates and

the batch estimate follow the maneuver very closely. The pitch and roll solutions exhibit nominal behavior

and the residuals are extremely small. Figures 4b and 4c show the gyro bias estimates for both filters.

After 100 seconds they have not quite converged due to the larger initial attitude error. At the end of the

run (approximately 3000 seconds) the gyro bias has become quite stable with the values given below. The batch

epoch gyro bias is also given below (using approximatety 3000 seconds of data as wett).

Additive (deg/hr_} Muttipticative (deQ/hr) Batch (de_/hr)

x = 1.712 x = 1.719 x = -0.442

y = 1.988 y = 1.467 y = 0.442

z = 1.446 z = 1.475 z = -0.050

The batch cannot fottow a change in the gyro bias since it gives only one solution at the epoch. The solved

for biases are influenced by the initial bias and the bias after the maneuver and thus are somewhat between

the two.

In the following cases both fitters were used to study the characteristics of using different sensor

combinations, as opposed to using data from art three sensors concurrently. The combinations were IR/MAG,

FSS/MAG, XR only, and MAG only. |n all cases beth fitters showed poor estimation of gyro bias, particularly in

those cases with magnetometer data. The magnetometer, which suffers from a digitization of 6 mittiGauss, is

too coarse to estimate gyro bias. This digitization results in the magnetometer having only coarse attitude

estimation abitity. Without the availability of a fine attitude solution the gyro bias is not observable.

Figures 5a and 5b show the estimation of yaw by the additive EKF and the batch algorithm for an IR/MAG

combination. The muttipticative EKF yaw solution again had the same shape as the additive EKF with a final

yaw of -0.664 degrees. The a priori attitude was set to 0 degrees and the gyro bias was estimated. Art show

similar values for attitude. It was found when using two sensors, one being the magnetometer, that better

results were achieved when the FSS or IR measurement uncertainties were increased to 0.1 degrees. At 0.01

degrees there was too much disparity between the uncertainties and the filter exhibited more fluctuations.

Figure 5c shows the gyro bias estimation from the additive EKF with the batch epoch solution listed. The

muttiplicative gyro bias estimates took like the additive with final x, y, and z values of -4.413, 0.852, and

-2.090 deg/hr, respectivety. The fitter solutions show quite a bit of ftuctuation. Between the three

algorithms the final results are similar for x and y, but differ for z; the batch algorithm giving a much

better estimate. The x value for all three algorithms and the z for the filters is not estimated very welt

due to the magnetometer inaccuracy. The batch algorithm also weights the sensors differently which could

account for the differences in the final solution. The coarse estimation of yaw by the magnetometer (yaw is

not observable in the IR sensor) is shown in Figure 5a. These errors corrupt the gyro bias solution. The

pitch and roll behave nominally since they are estimated mainly by the IR sensor. The IR residuals are also

very smart. A sample of the magnetometer residual is also shown in Figure 5d. The digitization is apparent

in the residual curve. Also shown are the expected values (plus and minus) of the residual (dashed lines).

The magnetometer residual settles near these values.

An attempt was made to improve the gyro bias variation by increasing the uncertainty on the magnetometer

from 3 to 50 mittiGauss. This did not improve the results at all.

Without the gyro bias estimation, the IR/MAG solutions wilt converge from a much larger initial attitude

error. Figures 5e and 5f show the yaw solutions for the multiplicative EKF and the batch algorithm with a 50

degree initial attitude error. The additive EKF yaw solution has the same shape as the muttipticative EKF

with a final yaw of -0=!23 degrees. All three a!gor_thn_s have final solutions that are quite similar. The
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pitch and roll solutions are nominal. The IR residuals are very small and the magnetometer residuals show

similar behavior to that shown in Figure 5.d.

As in the IR/MAG case, solutions using an FSS/MAG combination were generated. Again the gyro bias was

poorly estimated for the same reasons stated above. The algorithms were again started with a 0 degree initial

attitude. Figures 6a and 6b show the additive EKF and the batch yaw solutions. The m_Jltiplicative EKF yaw

solution again has the same shape as the additive but with a final yaw of 0.162 degrees. Both filter solutions

exhibit quite a lot of fluctuation, The FSS loses coverage at 980 seconds. This causes mere divergence

in the solution. The roll solution exhibits similar behavior, with considerable fluctuation (the roll also

shows this behavior because the FSS does not directly measure the roll as the ZR sensor does). The final roll

values are 1.64, 1.63, 0.7 degrees for the additive, multiplicative, and batch algorithms, respectively. The

pitch shows a slightly mere nominal behavior. Figure 6c shows the additive gyro bias estimates. The

multiplicative gyro bias estimates Look the same with final x, y, and z values of -5.786, -0.582, and -26.219

deg/hr. The batch again gives a much better estimate of gyro bias for z than the filters do. The gyro bias z

solutions for the filters are better before the toss of the FSS. Near 750 seconds, the multipticative gives a

gyro bias solution of -1.3, 1.7, 1.3 deg/hour. The additive filter is similar. Once the FSS is lost, though,

the filter is relying solely on the magnetometer. The residuals in this case are similar to previous results.

As in the case of the IR/MAG solutions, an attempt was made to stabilize the gyro bias estimation by

increasing the measurement noise on the magnetometer from ] to 50 milliGauss. Figure 6.d shows this result

for the additive filter (the multipLicative fitter is similar). In this case, the gyro bias is improved by

increasing the magnetometer measurement noise. The final results are much closer to the actual values. The x

gyro bias estimate is now better than the batch estimate. This technique may work better in the FSS/MAG

combination since the FSS gives some estimate of the yaw solution, and thus the problem of relying only on the

magnetometer for yaw estimation is avoided.

As in the case of the IR/MAG solutions, without the estimation of gyro bias the filters converge from

much larger initial attitude errors. The yaw solutions are shown in Figures 6e and 6f for the additive and

the batch. The muLtipticative is si_,iLar with a final yaw of -0.647 degrees. The roll solutions converge to

final values of 1.94, 1.19, and 0.46 degrees for the additive, multipticative, and batch algorithms,

respectively. The pitch solutions show a nominal behavior. For the additive filter a 50 degree initial

attitude error was used, for the muttiplicative and the batch algorithms the maxinNJm initial attitude error

was 30 degrees. The solutions converge quickly and the three algorithms give similar solutions.

The final two cases investigate the use of only one sensor. Figures 7a and 7b show the multiplicative

EKF and the batch yaw solutions using only magnetometer data. The additive EKF yaw solution is similar to the

muttipLicative with a final value of -1.254 degrees. The a priori attitude error was set at 50 degrees and

gyro bias was not estimated. ALL three converge to Less than 1 degree (the additive eventually converges this

far as well) error using approximately a half orbit of data. The pitch and roll solutions show similar

resuLts with the pitch solution converging within approximately 300 seconds. Figure 8 shows the yaw solution

from the muttipLicative fitter using only IR data. The additive filter and batch algorithm did not converge

using only ZR data with an initial attitude error of 50 degrees. Figure 8 shows that the yaw solution

eventually converges with only IR data due to quarter orbit coupling (related to the geometry of the ERBS

attitude). The pitch and roll solutions converge within 10 seconds to values Less than 0.05 degrees.

Sensor Calibration

A further test of gyro bias estimation was performed to determine if the filter could follow a change in

the bias. In this case the gyro bias was started at 3.6 deg/hour on all axes, and after 300 seconds it was

switched to -3.6 deg/hour. Figure 9 shows the estimation of this gyro bias by the additive filter. The

filter follows the change and converges again within 200 seconds. The multipticative filter exhibits similar

behavior. The batch algorithm cannot estimate a gyro bias change since it estimates only a single solution at

the epoch (and then the epoch attitude is propagated using the gyro data corrected for the epoch gyro bias).

The remaining calibration study focuses on the FSS, IR, and magnetometer. The same clean simulated data

were used and biases were applied to the sensors being studied. A priori covariances were selected to be

lx10 "7 (units for particular bias) for biases based on the sensitivity study performed on the gyro bias. In

the future, sensitivity studies should be performed on each sensor calibration to determine the best a priori

covariance. The first studies involved applying a single calibration error to only one sensor at a time.

Several calibration errors were then applied to study, the capability of the filters to estimate several

24?



8

L. ' "/':°

--,. ! ._ _.,--'_ I_.
, t/ u. _ I,-

:: $

\-. _ 18

..... ,--'-'_", , "_, , , 18

(HHID3O) $VI90SXD

8

,_" >¢ x _.)--
'-,_..,,. \ ._,.,-..,-"-"

"," ............. / ,---'--" .,n

I I -- "-=.=r_==': , 8

o
II

.go
uJ
_>

o

I

g

I-
r_
r_
<(

<(

O
_r
),-

I
f_
(D

_1"t.,4 o)

x w

_-_ /
"JCI _o_o _ o

-!

d " d c; o o o o oo i i i i

(S33_D3Q) AAVA

il

-J(_
<(m

z,

I I ,,---"T'_ I I I

($3_O_O) M'#A,

8
d

o

8

_o

Lu
r_

o
II

(..)co
P'O
<(r,"
co>-

o
t_

n

I-

i

cD

Z

0

I--

_J
o

(6

(.9

248



, I
o
0 d

11

Z_
ITc)

I I I I I

d o d d d

|S33_1030) MVA

[S:_I:193(] ) MVA

249



calibration parameters at once.

The first calibration parameter to be studied was the [R bias. Table 3 shows the IR bias for the

muttipticative and additive filters. The final entry in the table is the highest correlation coefficient,

indicating the least observable component. A 0.1 degree bias was applied to both the measured pitch and roll.

Table 3 shows that the multiplicative filter estimates the pitch bias quite welt. The roll bias in the

multiplicative filter is not observable. It is highly correlated with the first angle in the error state

vector due to the geometry in this case. The FSS does not supply enough roll information. With

Table 3. Estimation of IR Horizon Scanner Pitch and Roll Bias

(A priori attitude = 0 degrees)

Fitter Length

Bias (deg) Uncertainty (deg) Nighest

Rott Pitch Rott Pitch Correlation

Mutt. 200 sec -0.177 0.103 0.014 0.0006 (el,r)=0.989

Add. 200 sec -50.01 3.528 0.003 0.0105 all high

different geometry (the sun in a different location in the FOV or sun in the other FSS) the roll bias should

be estimated as well as the pitch bias in the present example. The additive filter does not estimate either

the pitch or roll bias welt.

The next bias studied was an FSS bias. Table 4 shows the estimated values when a 0.1 degree bias was

applied.

Table 4. Estimation of FSS Alpha and Beta Bias (A priori attitude = 0 degrees)

Fitter Length

Bias (deg) Uncertainty (deg) Highest

alpha bet____aa alpha beta Correlation

Mutt. 200 sec 0.208 0.110 0.012 0.0011 (ei,=)=0.986 , (e3,=)=0.982

Add. 200 sec 53.38 124.3 0.0005 0.0001 (qi,=)=0.873

Again the multipticative fitter estimated one of the biases (beta) quite welt. With a longer run, the beta

bias converges to approximately 0.1 degrees. The alpha bias is not observable again due to geometry. The

additive fitter shows poor estimation without significant observabitity problems as reflected by the

correlation matrix.

The next bias estimated was magnetometer bias. A 10 milliGauss bias was applied on all axes. Table 5

shows that both fitters estimate the bias quite well.

Table 5. Estimation of Magnetometer X, Y, and Z Biases (A priori attitude = 10 degrees, gyro bias

estimated)

Bias (m6) Uncertainty (mG) Nighest

Fitter Length X _ Z X _ Z Correlation

Mutt. 200 sec 13.46 12.87 13.68 0.173 0.173 0.173 small

Add. 200 sec 13.48 12.90 13.72 0.173 0.173 0.173 small

The correlations were all very small. The estimated biases are all within 6 mitliGauss (the resolution of the

magnetometer) of the applied biases.

FSS misalignment was the final calibration error studied with the muttiplicative fitter. (The additive

fitter was not studied because of its poor performance estimating the previous calibration errors.) A 0.1

degree misalignment was applied to the FSS x and y axes and a 0.05 degree misalignment was applied to the FSS

z axis. The misatignment uncertainty was 0.18 degrees. After 200 seconds the estimated misatignments were

-0.070, -0.22, -0.51 degrees for the FSS x, y, and z axes, respectively, with uncertainties of 0.032, 0.043,

and 0.093 degrees. The x and z misatignments are highly correlated to one another (the correlation

coefficient was 0.998) but the three misatignments are not highly correlated to the attitude. Next, the

filter was run with the same misalignments applied, but alpha and beta biases were solved for instead of
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misalignments. This revealed that the filter could not distinguish the misalignments from biases. The beta

bias, which corresponds to a y misatigrwnent, was estimated well but the alpha bias was not since it is not

observable at this attitude (this means that the x and z misatignments are also not observable). The

estimated biases after 200 and 400 seconds were

= = 0.12 _ = 0.09 o = 0.005 degrees (200 seconds)

= =-0.01 6 = 0.09 a = 0.0006 degrees (400 seconds)

Data from different attitudes would Ioe necessary to estimate the alpha bias and also to try and estimate

the misatignments and distinguish them from biases.

The muttiplicative filter was set up to solve for several calibration errors in one run. The estimated

components consisted of attitude, gyro bias, FSS y misalignment, FSS beta bias, IR pitch bias, and

magnetometer bias. The sensor errors applied were the same as those used previously. After 400 seconds the

filter gave estimates of gyro and magnetometer bias like those given above (in the nominal cases). The filter

did not give goad estimates of the other calibration errors. With all the errors co_oined the FSS y

misatignment and beta bias and the iR pitch bias were not observable, even though the beta and pitch biases

were observable to the fitter when applied alone. The geometry in this case does not give enough information

to solve for all the parameters together. Again, data from several attitudes should be used and perhaps the

state should be kept smaller when performing sensor calibration. It would be necessary to iterate to solve

for all the sensor errors.

The gyro scale factor and misalignments were not estimated because a single attitude would not give

sufficient observabitity. Attitude maneuvers would be necessary. This is also true for the FSS scale factor.

The magnetometer misalignment or scale factors _ere not estimated in this initial study as they are likely not

to be observable with the coarse ERBS magnetometer data.

Real Data

The last test studies the behavior of the filters when using real ERBS data. The orbit of data

selected contained approximately 10 minutes of FSS data at the beginning and end of the orbit. Figures lOa

and lOb show the muttipticative EKF and the batch algorithm estimates of yaw. The additive EKF yaw solution

looks like the multipticative with the sa_e final value. Figure 10c shows the multipLicative gyro bias

estimates. The additive has final x, y, and z gyro bias estimates of -7.393, -4.795, and 1.627 deg/hr,

respectively. The roll and pitch solutions took similar to the yaw solution with final values of 0.07, 0.07,

0.10 degrees roll and 0.30, 0.30, 0.30 degrees pitch for the additive, rnultiplicative, and batch algorithms,

respectively. The filters have slightly smaller estimates of yaw, and the three algorithms have similar

values for pitch and rolL. The gyro bias estimates are similar in y, but x and z are somewhat smatter for the

two fitters than for the batch (comparing the final filter results with the batch epoch). The two fitters

exhibit very similar behavior. The residuals for the FSS were considerably smatter for the two filters than

for the batch algorithm. The IR residuals were similar and the magnetometer residuals exhibited behavior

similar to that shown in Figure 5.d. In the case of the real data, the true reference is not known. The

smaller residuals in the filters tend to give those solutions more credibility.

VIII. POTENTIAL APPLICATION

A version of the additive filter was created in which only attitude and gyro bias are solved for (the

dimension of Equation 2.9 was reduced to 7). This filter was then tested with sirnutated ERBS data in a real-

time attitude determination system (Reference 5). The filter was able to process the data and generate the

attitude an</ gyro bias solutions shown in Figures 1 and 2 (baseline) in real time (the nominal ERBS data rate

is 1 set of measurements every second). Currently, reat-tima attitude support in the Flight Dynamics Division

is performed with single-frame estimators that solve only for attitude. The real-time filter has the

capability of giving much more accurate solutions in a relatively short peried of time (see Figures 1 and 2

for the length of time to converge). Gyro bias estimates could also be generated when sufficient data

coverage is available. This real-time filter gives results comparable to the ERBS batch algorithm, which

requires considerably more processing time and memory. This real-time filter is currentty being adapted as a

prototype system to be used by the GRO. Future missions, such as the SMEX series, are also planning to
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implement a real-time filter, based on that developed for ERBS.

The full-state fitter has potential application for non-real-time support. The initial test results

given in Section VII demonstrate that it can give solutions comparable to the batch algorithm (in certain

scenarios, others need further investigation as to why the filter solutions differ from the batch). It is

also advantageous to combine the attitude estimation with the sensor calibration since the correlation matrix

provides valuable information on observabiLity conditions. The co_3ined attitude determination and sensor

calibration can be implemented into a batch algorithm. The batch algorithm, though, requires much more memory

and has no means of compensating for dynamic noise which can affect an epoch attitude solution propagated over

a tong period of time.

IX. CONCLUSIONS

In the scenarios presented (using nominal simulated data) both filters, the additive and muttipticative,

are very robust in attitude estimation. The filters can be started with Large initial errors and still have

quick convergence. The batch algorithm is more sensitive to Large initial attitude errors in some cases. The

filters also exhibit good estimation of gyro bias (when the optimal sensor data are available), although the

batch converges with less data. The filters follow changes in attitude and gyro bias closely; the batch

algorithm also follows an attitude maneuver ctosety but it cannot follow changes in gyro bias. When the

optimal sensor combinations are not available, the fitters must rely on the magnetometer data. The attitude

solutions are still estimated well, but the gyro bias is not estimated as well. For ERBS this is a result of

the coarseness of the magnetometer data. The batch algorithm does a batter job estimating gyro bias in these

cases. Further investigation into the weighting is necessary to find ways of improving the filter results

(the results would also be improved with a more accurate magnetometer). Both filters also gave reasonable

results when using real ERBS data. The filters had slightly smaller residuals than the batch algorithm.

Since the true solution is not known, the residuals are the only real figure of merit.

The pseudo-measurement normetization technique is an acceptable normalization method when computer

processing time is not critical. When the noise Level is selected properly, the pseudo-measurement technique

gives results comparable to the original normalization technique. When the noise level is not selected

property, the attitude solutions converge to the wrong value. In the scenario presented this had a

significant impact on the pitch sotution.

The multipticative fitter has better sensor calibration characteristics than the additive filter. The

reasons why are not clear as of this writing. Perhaps the attitude singularity in the additive filter has

an affect on the ability of that filter to distinguish and estimate sensor errors. With a single set of data,

many calibration errors are not observable. Further study of the sensor calibration with different data

spans, giving different sensor coverage, is necessary to fully determine the capabilities of the

muttiplicative filter. Additional studies should also be performed with sensor corruption, such as noise and

data dropout.
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